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Ever improving, lower cost computation generates             

big data, which drives machine-learning and AI
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& networks 
• 50% better performance/year

• less cost/year
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Ever improving, lower cost computation generates             
big data, which drives machine-learning and AI

Computation & storage 

& networks 
• 50% better performance/year

• less cost/year

Massive Data

• 90% of all data created in 

the last two years

Machine Learning & AI 

Foundation Models 

• Already 98% of enterprises  already 

use AI
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Digitization is progressing quickly

• Electric Grid

• Physical assets

• Weather

• Climate

• Materials

• ….
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Let’s talk Data
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Data Challenges - Various modalities

Sequence Time series Geospatial N-dimensional ….

Text

Image

Vector

Audio

…
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Data Challenges – Creating Context

8IBM Research  © 2023 IBM Corporation



Data Challenges – Creating Context

9IBM Research  © 2023 IBM Corporation



Data Challenges – Creating Context
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Data Challenges – Gravity vs Entropy
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Data Challenges – Gravity vs Entropy
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Data Challenges – Lack of Discoverability

Knowledge

Data set

Data

Feature

Model 

Insights from 

papers

Meta Data

Extremes / 

Quantiles

Feature 

vectors

Forecast

models
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Today’s focus
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Question – How to envision the next-gen data 
technology to support AI for energy systems? 
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Next Gen Data System

Distributed, massive, 

multi-modal data
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• Federated, integrated and contextualized 

• Scalable search and discovery

Next Gen Data System

Distributed, massive, 

multi-modal data
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ML, AI

Next Gen Data System

• Federated, integrated and contextualized 

• Scalable search and discovery

• Rapid insights (with little data movement)

Distributed, massive, 

multi-modal data
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Innovation and Research  opportunities for next-
gen data technology to support AI for energy 
systems

• New federation approaches & 

distributed computing 

• New forms of in-data computation 

• Advanced indexing / novel data 

structures for energy system specific 

information

• Information discovery (going 

beyond meta-data)

• New forms of representing logical 

and physical information
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Let’s talk ML and AI
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The evolution of AI and the emergence of 
Foundation Models
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Foundation Models – how do they work ?
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Why Foundation Models?

Task B

Task A

Task C

Classical AI models: 

Purpose-built and siloed

25IBM Research  © 2023 IBM Corporation



Why Foundation Models?

Task B

Task A

Task C

Classical AI models: 

Purpose-built and siloed

Foundation Models: 

One base supports multiple tasks

Foundation Models
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Why Foundation Models?

Less labeling means 
less effort and lower 

upfront costs

Effort mostly on fine 
tuning and inferencing 

means faster deployment

Equal or better accuracy 
than state-of-the-art for 

multiple use cases

Better performance means 
incremental revenue

Economy of scale drives the development                   
of Foundation Models
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NLP Foundation models are 
taking the world by storm

28IBM Research  © 2023 IBM Corporation



Question – Can we develop “foundation 
models”  for energy systems? 
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AI Energy systems go beyond text data

Text Geospatial/Weather

Downstream applications High value & Many TBD

Data availability Available TBD

Data type Sequence Multi-modal, multi-dimensional

Data variety Limited numbers of words TBD

Context Relative complete TBD

Base Model Grammar / rules NWP / Physics

Architectures Transformers TBD: Transformers, Graphs, Operators
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An important modality for energy 
systems is geospatial  

 Weather

 Satellite imagery

 LIDAR point clouds 

 AMI

 Drone imagery

…and many others 
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AI Energy systems go beyond text data

Text Geospatial/Weather
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Remote Sensing Data  
(multispectral & microwave radar)

Foundation Model for  
Remote Sensing

Weather Observations/Forecasts Data

Foundation Model for  
Weather & Climate

...
Downstream Tasks – Fine-tuned Models

Wildfire 
detection

Biomass  
estimation

... Extreme 
Forecasting

Outage  
Prediction

Building Geospatial Foundation Models

Land use/  
Land cover

Renewable  
Forecasting
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t-2

Encoder
(Large)

Decoder

Masked Input Reconstructed Input

t

t-1 t-1

t

t-2

Foundation 

Model

Self-supervised learning to build Foundational Models
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Data sampling procedure

IBM Research / Doc ID / Month XX, 2020 / © 2020 IBM Corporation

Selecting pre-
training data

Sampling data from 
across US

Requirement → diversified

pre-training dataset.

–For a given region, 

images can look similar 

across time.

–Random sampling → can 

bias towards most 

common landscapes.

Intelligent sampling scheme 

based on geospatial 

statistics.

Sampling scheme

1. Aggregate various 

geospatial statistics (land 

use, climate zone etc.).

2. Divide the region into 

groups based on these 

statistics.

3. Sample data as equally 

as possible from each 

group.
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Model architecture (MAE = Masked AutoEncoder)
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– Pre-training task: 

reconstruct masked
patches → target = original 

data.

– MSE loss on masked
patches.

Encoder → Vision 

transformer (ViT/Swin) for 
multispectral 3D data.

– 3D patch embeddings

– 3D positional encoding

Decoder → Transformer 

blocks + linear projection 
layer to match the target 

patch size. 

ViT architecture + 

3D Patch embedding + 

3D positional encoding

37

Pre-training
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Pre-training results

original mask predicted visible + predicted

t2
t1

t0

(a)

original mask predicted visible + predicted

(b)

t0

t1

t2

original mask predicted visible+

predicted

original mask predicted visible+

predicted
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Semantic  

Segmentation

Wildfire detection

Encoder
(Large Transformer)

Foundation model for  

remote sensing

Classification

Land Use/Land Cover

Bare  

Developed  

Forest

Shrub  

Water

…

Example fine-tuning workflow  
for satellite

Regression

Above/Below Ground Biomass

Input remote sensing data
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Semantic  

Segmentation

Extreme weather situation

Encoder
(Large Transformer)

Foundation model  

for weather

Classification

Cloud Type

Example fine-tuning workflow  
for weather

Regression

Solar/Wind Forecasting

Input weather data
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Fine-tuning – Segmentation, classification and 
regression tasks
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Inference insights:

Flood detection

42

<< Inference>>  
(e.g., flood task) Insights:  Flood impact

“Prompt”: Image(s) (spatial + temporal domains)
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Flood detection example - fine-tuning analysis

 Pre-trained model achieves higher IoU with a smaller 
number of training epochs and more consistently.

 It is robust to a reduction of 50% in the training 
data and performs consistently in most regions 
where it has not been trained.
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Innovation and Research  opportunities for AI 
and Foundation Models for energy systems

• What (high-value) downstream tasks 

need to be addressed?

• What content is required for pre-

training, finetuning and inference?

• What is the pre-training/masking 

approach?

• What architectures are required?

• How to derive most efficiently 

knowledge from foundation models
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Thank you
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